硕士生导师张文副教授简介
姓名:张文
所属学科:数学、应用统计
职称/职务:副教授
研究方向与领域 :非线性分析,偏微分方程,应用统计
联系方式: wenzhang@hutb.edu.cn
掌握的外国语:英语
来校时间:2016年7月
教育背景:
2004.09-2008.07,安庆师范大学,本科
2009.09-2012.06,云南师范大学,硕士
2013.09-2016.06,中南大学,博士
2018.11-2020.11,中南大学,博士后
工作经历:
2016.07-至今,湖南工商大学理学院,讲师,副教授
2018.04-2020.05,中南大学数学与统计学院博士后流动站,博士后
2021.10-2022.10,罗马尼亚克拉约瓦大学,访问学者
学术兼职:
担任美国数学评论《Math.Reviews》评论员和多个国际SCI学术期刊的同行审稿人;
协助成立中国-罗马尼亚应用数学研究中心并担任骨干成员;
担任如下国际SCI期刊的编委
《Boundary Value Problems》(SCI检索)编委
《Opuscula Mathematica》(ESCI检索)编委
《Electronic Research Archive》(SCI检索)特刊“Local and nonlocal phenomena in nonlinear equations”Guest Editor
主要头衔与荣誉:
湖南省普通高校青年骨干教师;
湖南工商大学151人才第三层次B类人才;
湖南工商大学学术新人奖;
湖南省数学竞赛优秀指导教师。
主要课题:
国家自然科学基金青年项目,带梯度项的反应扩散系统解的存在性与动力学性态,11701173,2018-2020,主持;
中国博士后科学基金面上项目一等资助,分数阶椭圆方程组解的多重性及性态研究,2018M640758,2018-2020,主持;
湖南省自然科学基金面上项目, 具变分结构的非局部耦合系统驻波解的动力学研究, 2022JJ30200, 2022-2024,主持;
湖南省自然科学基金青年项目,全空间上哈密顿椭圆系统解的存在性与集中性,2017JJ3131,2017-2019,主持;
湖南省教育厅优秀青年项目,非线性分数阶Schrodinger方程组解的存在性及性态研究, 18B342, 2019-2021,主持;
湖南省教育厅重点项目,非线性分数阶Schrodinger方程组解的存在性及性态研究, 22A0461, 2023-2025,主持;
代表性科研论文:第一作者和通讯作者发表SCI论文(*为通讯作者):
[1]Wen Zhang,J.Zhang, V.D.Rădulescu,Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, Journal of Differential Equations,347(2023),56–103.
[2]Q.Q. Li, J.J. Nie,Zhang, Wen Zhang*,Existence and Asymptotics of Normalized Ground States for a Sobolev Critical Kirchhoff Equation,J. Geom. Anal.,(2023) 33:126.
[3]Q.Q. Li, J.Zhang, Wen Zhang*,Multiplicity of semiclassical solutions for fractional Choquard equations with critical growth,Analysis and Mathematical Physics,(2023) 13:27.
[4]J.Zhang, Wen Zhang,V.D.Rădulescu,Double phase problems with competing potentials: concentration and multiplication of ground states,Math. Z.,301(2022),no. 4,4037–4078.
[5] Wen Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems, J. Geom. Anal.32(2022),no. 9,235.
[6] Wen Zhang,S. Yuan, L. X. Wen, Existence and concentration of groundstatesfor fractional Choquard equationwith indefinite potential, Adv. NonlinearAnal.,11 (2022) 1552-1578.
[7]J. Zhang,WenZhang*,Semiclassical states for coupled nonlinear Schrödinger system with competing potentials.J. Geom. Anal.32 (2022), no. 4,114.
[8] WenZhang,G.Yang, Homoclinic orbits for first-order Hamiltonian system with local super-quadratic growth condition,Complex Var. Elliptic Equ.67(2022),no. 4,988–1011.
[9] F.F. Liao, WenZhang*,New asymptotically quadratic conditions for Hamiltonian elliptic systems, Adv. Nonlinear Anal.11(2022),no. 1,469–481.
[10] H.L. Mi, X.Q. Deng, WenZhang*, Ground state solution for asymptotically periodic fractionalp-Laplacian equation.,Appl. Math. Lett.,120 (2021),106437, 8 pp.
[11] J. Zhang, J. Chen, Q.Q. Li, Wen Zhang*, Concentration behavior of semiclassical solutions for Hamiltonian elliptic system, Adv. Nonlinear Anal. 2021; 10: 233-260.
[12]Wen Zhang,J. Zhang, H.L. Mi,Ground states and multiple solutions for Hamiltonian elliptic system with gradient term,Adv.NonlinearAnal.10(2021)331-352
[13] Wen Zhang,H.L. Mi, F.F. Liao, Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation., Appl. Math. Lett.,107 (2020),
106437, 8 pp.
[14] Z. Chen, D.D. Qin, Wen Zhang, Localized nodal solutions of higher topological type for nonlinear Schrödinger-Poisson system, Nonlinear Anal.198(2020),111896, 21 pp.
[15] Wen Zhang, J. Zhang, X.H. Tang,Ground state homoclinic orbits for first-order Hamiltonian system, Bull. Malays. Math. Sci. Soc.43(2020),no. 2,1163–1182.
[16] J. Zhang, Wen Zhang*, Existence and asymptotic behavior of ground states for Schrödinger systems with Hardy potential, Nonlinear Analysis 189 (2019) 111586.
[17] J. Zhang, Wen Zhang*, Existence and decay property of ground state solutions for Hamiltonian elliptic system, Commun. Pure Appl. Anal.18(2019),no. 5,2433–2455.
[18] Wen Zhang, F.F.Liao, Nontrivial solutions for a class of Hamiltonian elliptic system with gradient term, Appl. Math. Lett., 98(2019),81–87.
[19] J. Zhang,Wen Zhang*, F.K. Zhao, Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation, Z. Angew. Math. Phys. (2018) 69:116.
[20] J. Zhang, Wen Zhang*, X.L. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88(2019),21–27.
[21] J. Zhang, Wen Zhang*, X.H. Tang,Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term, Nonlinear Anal. Real World Appl.40(2018),377–402.
[22] Wen Zhang, J. Zhang, W.J. Jiang, Infinitely many solutions for a class of superlinear Dirac-Poisson system, Appl. Math. Lett.,80(2018),79–87.
[23] Wen Zhang, J. Zhang, H.L. Mi, On fractional Schrödinger equation with periodic and asymptotically periodic conditions, Comput. Math. Appl.74(2017),no. 6,1321–1332.
[24]J. Zhang, Wen Zhang,X.H. Tang, Stationary solutions for a nonlinear Maxwell-Dorac system, (Chinese)Chinese Ann. Math. Ser. A38(2017),no. 1,1–12.
[25] Wen Zhang, J. Zhang, Z.M. Luo, Multiple solutions for the fourth-order elliptic equation with vanishing potential,Appl. Math. Lett.73(2017),98–105.
[26] J. Zhang, Wen Zhang*, X. H. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37.(2017) no. 8,4565–4583.
[27] J. Zhang, X. H. Tang, Wen Zhang*, On semiclassical ground states for Hamiltonian elliptic system with critical growth, Topol. Meth. Nonl. Anal. 49 (2017) 245-272.
[28] Wen Zhang, B.T. Chen,X.H. Tang, J. Zhang, Z.M. Luo, Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type,Commun. Pure Appl. Anal.15(2016),no. 6,2161–2177.
[29] W. Zhang, Jian Zhang*, X. Xie, On ground states for the Schrodinger Poisson system with periodic potentials, Indian J. Pure Appl. Math. 47 (2016) 449-470.
[30] Wen Zhang, X. H. Tang, J. Zhang, Existence and concentration of solutions for Schrödinger–Poisson system with steep potential well, Math.Meth. Appl. Sci., 39 (2016)2549–2557.
[31] J. Zhang, Wen Zhang, X. L. Xie, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Commu. Pure Appl. Anal. 15 (2017) 599-622.
[32] Wen Zhang, X. H. Tang, J. Zhang, Stationary solutions for a superlinear Dirac equation, Math.Meth. Appl. Sci., 39 (2016)796–805.
[33] Wen Zhang,X. H. Tang, J. Zhang, Infinitely many radial and non-radial solutions for a fractional Schrodinger equation, Comp. Math.Appl, 71 (2016) 737-747.
[34] Wen Zhang, X. H. Tang, J. Zhang,Ground states for a class of asymptotically linear fourth-order elliptic equations, Appl. Anal.94(2015),no. 10,2168–2174.
[35]Wen Zhang, X. H. Tang, J. Zhang,Homoclinic orbits of nonperiodic superquadratic Hamiltonian system, Taiwanese J. Math. 19(2015) 673-690.
[36] Wen Zhang, J. Zhang, F. K. Zhao,Multiple solutions for asymptotically quadratic and superquadratic elliptic system of Hamiltonian type, Applied Mathematics and Computation 263 (2015) 36-46.
[37] Wen Zhang, X. H. Tang, J. Zhang, Existence and concentration of solutions for sublinear fourth-order elliptic equations., Electron. J. Diff. Equ., 3 (2015) 1-9.
[38] Wen Zhang, X. H. Tang, J. Zhang, Ground state solutions for a diffusion system, Comput. Math. Appl.69(2015),no. 4,337–346.
[39] J. Zhang, X. H. Tang,Wen Zhang*, Ground states for nonlinear Maxwell Dirac system with magnetic field, J. Math. Anal. Appl. 421 (2015) 1573-1586.
[40] J. Zhang, X. H. Tang, Wen Zhang, Infinitely many solutions of quasilinear Schrodinger equation with sign-changing potential, J. Math. Anal. Appl. 420 (2017) 1762-1775.
[41] J. Zhang, X. H. Tang, Wen Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential, Appl. Math. Comp. 242 (2014) 491-499
[42]J. Zhang, X. H. Tang, Wen Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Applied Mathematics Letters 37 (2014) 131-135.
[43] J. Zhang, X. H. Tang, Wen Zhang*, On ground state solutions for superlinear Dirac equation, Acta Mathematica Scientia 34 (2014) 840–850.
[44]Wen Zhang, X. H. Tang, J. Zhang,Infinitely many solutions for fourth-order elliptic equations with sign-changing potential, Taiwanese J. Math. 18(2014) 645-659.
[45]Wen Zhang, X. H. Tang, J. Zhang,Infinitely many solutions for elliptic boundary value problems with sign-changing potential,Electron. J. Diff. Equ., 53 (2014) 1-11.
[46] J. Zhang, X. H. Tang,Wen Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Analysis 95 (2014) 1-10.
[47] J. Zhang, X. H. Tang,Wen Zhang, Ground state solutions for non-periodic Dirac equation with superquadratic nonlinearity, J. Math. Phys. 54 (2013) 101502.
[48]Wen Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials,J. Math. Anal. Appl. 407 (2013) 359-368.
[49] T.F. Wang, Wen Zhang*, J. Zhang, Existence and asymptotics of ground states to the nonlinear Dirac equation with Coulomb potential, Asymptotic Analysis, DOI 10.3233/ASY-211748.
[50]X.L. Xie, T.F. Wang, Wen Zhang*, Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction , Applied Mathematics Letters, 135 (2023) 108418.
Powered By 湖南工商大学理学院 Version Imd 2.1.0
CopyRight 2005-2023 ©sms.hutb.edu.cn | 备案序号: 湘ICP备19022342 湘教QS3-200505-000476 | 网站管理